BREATHING & EXCHANGE OF GAS

Various organs

Body surface-lower Invertebrates (sponges, coelenterates,

flatworms)

Skin (most cuticle)
Earthworms, Leech

Gills (Branchial Respiration)

Aquatic arthropods, molluscs

Tracheal Tubes
Insect

Lungs (Pulmonary Respiration)

Most vertebrates (amphibians, reptile, birds, mammals)

NOTE

STAGES of Breathing = Inspiration + Expiration	
INSPIRATION	EXPIRATION
Active process	Passive process
Intake of air from the atmosphere to the lungs	Expelling air from lungs into atmosphere
Diaphragm contracts; inc. volume of the thoracic cavity (anteroposterior axis)	Inter-coastal muscles & diaphragm relaxes; dec. thoracic volume
External intercoastal muscles contract (dorsiventral axis)	Abdominal muscle & internal intercoastal muscles contract
Intra pulmonary pressure < atmospheric	Intra pulmonary pressure > atmospheric pressure (+ve pressure in
Respiratory volumes and capacities	

Tidal volume (TV): volume inspired/expired during normal respiration = 500mL

Residual Volume (RV) - the residual amount of air that remains in lungs even after forceful expiration = 1100-1200 mL

Inspiratory Reserve volume (IRV) Additional volume of air that can be inspired by forceful inspiration = 2500-3000 mL

Expiratory Reserve volume (ERV) Additional volume expired on forceful expiration = 1000-1100mL

41

Inspiratory capacity Volume inspired after normal expiration, TV+IRV = 3000-3500 mL

Expiratory capacity Volume Expired after normal inspiration, TV+ERV = 1500-1600 mL

Functional Residual capacity Volume remaining in lungs after normal expiration, ERV + RV = 2100-2300 mL

Vital capacity Volume that can be taken in after forced expiration, ERV+TV+IRV = 3500-4500mL

Total lung capacity Volume of air in lungs after max inspiration, RV + ERV + TV + IRV + RV = 5000-6000 mL

GASEOUS EXCHANGE

Alveoli and blood

Blood and Tissue

Diffusion of gases is based upon

- 1. Pressure / conc. gradient
- 2. Solubility of gases = $CO_2 > O_2$ (20-25 times)
- 3. Thickness of diffusion membrane

Thin squamous epithelium (alveoli)

Endothelium (alveolar capillary)

Basement membrane

Transport of O₂

97% (by RBC's)

3% (dissolved in plasma)

Formation of oxyhaemoglobin

Transport of CO2

70% (In form of bicarbonates) 20-25% (In RBCs)

Formation of carbamino- haemoglobin

7% (as carbonic acid) **in plasma**

CO₂ + H₂O carbonic H₂CO₃ anhydrase

HCO₃ + H⁺

- 100 ml oxygenated blood → delivers 5ml O₂ to tissues.
- 100mL deoxygenated blood → delivers 4mL CO₂ to alveoli.

Sigmoid curve

Binding of 1st molecule is difficult but it facilitates binding of 2nd, 3rd & 4th O₂ molecule (conformational changes)

 After the binding of 4th molecule, Hb is saturated.

Right Shift	Left Shift
pO ₂ decreases; pCO ₂ increases	Foetal blood (affinity of O ₂) > adult
acidic conditions pH decreases, H+ increases	pO₂ increases; pCO₂ decrease, pH (High)
Temp increases	Temp low

DISORDERS

Asthma - Inflammation to bronchi & bronchioles (problem in breathing)

Occupational Respiratory Disorders - Inflammation & fibrosis of lung (cause-Long exposure, to dust produced by stonegrinding)

eg. Silicosis (due to breathing silica)
Asbestosis (due to breathing asbestos particles)

Emphysema - Damaged alveolar walls causing decreased respiratory surface.

(Cause - cigarette smoking)

Regulation of Respiration

Respiratory Rhythm centre - Medulla oblongata (Dorsal region)

Chemosensitive area, Adjacent to rhythm centre (Sensitive to CO₂ & H)

Receptors are also associated with aortic arch & carotid artery.

Pneumotaxic centre - Pons

44